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Abstract

Objectives: This study aimed to (1) determine the feasibility of collecting behavioral data from participants
hospitalized with acute psychosis and (2) begin to evaluate the clinical information that can be computation-
ally derived from such data. Methods: Behavioral data was collected across 99 sessions from 38 participants
recruited from an inpatient psychiatric unit. Each session started with a semi-structured interview modeled
on a typical “clinical rounds” encounter and included administration of the Positive and Negative Syndrome
Scale (PANSS). Analysis: We quantified aspects of participants’ verbal behavior during the interview us-
ing lexical, coherence, and disfluency features. We then used two complementary approaches to explore our
second objective. The first approach used predictive models to estimate participants’ PANSS scores from
their language features. Our second approach used inferential models to quantify the relationships between
individual language features and symptom measures. Results: Our predictive models showed promise but
lacked sufficient data to achieve clinically useful accuracy. Our inferential models identified statistically
significant relationships between numerous language features and symptom domains. Conclusion: Our in-
terview recording procedures were well-tolerated and produced adequate data for transcription and analysis.
The results of our inferential modeling suggest that automatic measurements of expressive language contain
signals highly relevant to the assessment of psychosis. These findings establish the potential of measuring
language during a clinical interview in a naturalistic setting and generate specific hypotheses that can be
tested in future studies. This, in turn, will lead to more accurate modeling and better understanding of the
relationships between expressive language and psychosis.
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1. Introduction

Mental health clinicians are trained to detect nuances in patient behavior and thought processes con-
sidered to index critical diagnostic and prognostic features of illness. However, a mental healthcare system
that relies primarily on expert human judgment is bound to be costly, difficult to monitor for efficacy, and
prone to the influence of subjective biases (which may contribute to disparities and inequalities in care (e.g.,
Neighbors et al., 2003; Singhal et al., 2016). Despite considerable advances in identifying genetic, molecu-
lar, and neuroimaging biomarkers of mental illness (e.g., Holmes and Patrick, 2018; Lakhan and Kramer,
2009; Prata et al., 2014; Saykin et al., 2010), quantitative means for tracking behavior and predicting the
course of illness that are equivalent or superior to subjective methods are still unavailable. For real utility
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in clinical settings, there is an urgent need for quantitative benchmarks of illness that afford all the compu-
tational opportunities assigning a reliable numeric system to illness states can provide (even if the scientific
understanding of their biological underpinnings is still incomplete).

In this study, we sought to quantify the verbal behavior of patients in a psychiatric inpatient unit during
brief clinical encounters. The dyadic clinical encounter was designed to simulate an efficient mental status
exam conducted during clinical rounds in a psychiatry unit. The study’s primary objective was to determine
how quantitative measures of expressive language can predict the clinician’s assessment of symptom severity
in patients with a psychotic disorder. The psychiatric inpatient unit constitutes an optimal environment for
this type of experiment in that many patients present with acute symptoms that fluctuate throughout the
hospitalization, and the clinical encounter occurs in a naturalistic yet controlled setting.

An individual’s comprehension and expression of ideas and thoughts via language communication reflect
to a great extent their cognitive, mental, and emotional state. In individuals with a psychotic disorder,
language comprehension and expression may reflect aspects of both positive symptoms (e.g., delusions, con-
ceptual disorganization, hallucinations, feelings of grandiosity, and feelings of excitement and hostility) and
negative symptoms (e.g., emotional withdrawal, difficulty in abstract thinking, and disfluency of speech).
Impairment in language expression, termed clinically as “thought disorder,” has long been recognized as a
hallmark of psychotic disorders (Andreasen and Grove, 1986). Thought disorder may present as positive
symptoms of disorganized language (including derailment, tangentiality, incoherence, distraction, abnormal
use of referential markers, and illogicality) and negative symptoms consisting of poverty of language (in-
cluding lexicon, content, and syntax) and disfluent speech (including flat affect and pausing). Disorganized
language has been found to correlate with other positive symptoms of psychosis such as delusions (Andreasen
and Olsen, 1982; Docherty et al., 2003; Harrow and Marengo, 1986), whereas poverty of language lexicon and
syntax has been associated with other negative symptoms and semantic processing abnormalities (Gooding
et al., 2013; Nagels et al., 2016). The positive aspects of thought disorder have been associated with psy-
chosis across clinical diagnoses, whereas the negative aspects of thought disorder have been associated more
specifically with schizophrenia (Andreasen, 1979; Gooding et al., 2013; Yalincetin et al., 2017).

The potential value of quantitative analysis of natural spoken language has become increasingly apparent
in recent years, with progress in developing automated natural language processing and machine learning
methods (Hitczenko et al., 2020). Most quantitative studies of spoken language in psychotic disorders to date
have focused on identifying differences from healthy controls or other types of mental disorders at the group
level. A meta-analysis of studies using semantic space models such as latent semantic analysis to represent
word and sentence meanings and assess language disorganization mathematically suggested that this class of
methods could effectively distinguish between individuals with a psychotic disorder and healthy controls (de
Boer et al., 2018). The disorganization scores obtained with latent semantic analysis in some of these studies
were correlated with the manual scores (Corcoran et al., 2018; Elvev̊ag et al., 2007). Metaphor-identification
and sentiment-analysis algorithms were used to generate features for a classifier automatically, and these
features were shown to effectively distinguish between individuals with first-episode psychosis and healthy
controls (Gutiérrez et al., 2017). A meta-analysis of studies of non-verbal vocal expression found that some
quantitative measures of speech disfluency (specifically, pauses in speech) could distinguish individuals with
schizophrenia from healthy controls (Cohen et al., 2014).

Only a handful of studies have used quantitative analysis of spoken language to index the severity of
thought disorder and predict psychosis risk within a group of individuals with a psychotic disorder (Corcoran
et al., 2020). In a study of speech transcripts in which different aspects of thought disorder were manually
coded, an elevated rate of illogical expressions and poverty of content were shown to predict later transition
to psychosis in at-risk adolescents (Bearden et al., 2011). Latent semantic analysis and part-of-speech
tagging were used to evaluate discourse coherence and syntactic complexity (Bedi et al., 2015; Corcoran
et al., 2018; Elvev̊ag et al., 2007), and vector unpacking was used to evaluate poverty of language content
(Rezaii et al., 2019), to predict psychosis onset among high-risk individuals. Preliminary work from our
group further indicated that automated analysis of expressive language during psychiatric interviews is a
promising method for quantifying psychopathology in situ, on an individual basis, and longitudinally, as
required for tracking the trajectory of the disease in clinical settings (Vail et al., 2018).

Here, we characterized language expression during the dyadic encounters using measures of lexical in-
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formation, sentence coherence, and spoken disfluency to test for potential associations with positive and
negative symptoms of psychotic disorders captured by the clinical rating scales.

2. Material and Methods

The study’s primary goal was to identify associations between language measures derived from partici-
pant utterances during brief semi-structured interviews and positive and negative symptom scores derived
from comprehensive clinical interviews. After describing the study procedures, we detail our analytic plan,
which used a multilevel modeling approach to identify between-person differences and changes over repeated
assessments within the same individual, using predictive and inferential models.

2.1. Study Procedures

Study participants were adult individuals admitted to inpatient clinical services at McLean Hospital.
This population was selected to maximize the likelihood of studying individuals spanning the symptom
severity range on one or more symptom inventories and heighten the probability of observing clinically
meaningful severity changes within individuals over a brief period (i.e., three or fewer weeks). Hospitalized
individuals were eligible if they were (a) under a voluntary legal status and (b) had received a diagnosis (per
electronic health record) of either a primary psychotic disorder (i.e., schizophrenia, schizoaffective disorder,
or psychotic disorder not otherwise specified) or a psychotic condition secondary to an affective disorder
(e.g., bipolar disorder with psychotic features).

All screened individuals were first assessed by their treating physician for the capacity to be approached
for the study, after which research staff met with eligible individuals to explain the study and obtain informed
consent. Participants answered a short survey to document their understanding of the study, how the data
would be used, and whether it would affect their treatment. The survey was designed to protect individuals
with profound mental disturbance from study participation in cases where someone may not understand
essential information related to potential risks and benefits. The protocol was reviewed and approved by the
Institutional Review Board (IRB) of both Partners Healthcare, where the data was collected, and Carnegie
Mellon University, where identified samples were shared for analysis. All identifiable data were encrypted
at rest and in transit at both sites, and efforts were made to limit the exposure of potentially sensitive
information throughout data collection and analysis.

2.1.1. Clinical Assessments

Throughout their hospitalization, enrolled participants were interviewed one or more times by study
doctors (MDs), all Board certified psychiatrists, using a semi-structured interview. Each interview consisted
of a set of 13 questions (Table 1) selected by the study doctors to capture elements from a mental status
examination that psychiatrists perform during typical “clinical rounds” as part of their daily assessment of
each hospitalized individual. As compared with the more comprehensive symptom assessments performed
in research settings, which can take upwards of 45 minutes per study visit, we reasoned that this brief,
semi-structured encounter might contain most or all of the relevant signals necessary to estimate key indices
of symptom severity.

After the MD visit, research staff followed the brief encounter with the administration of a more com-
prehensive assessment of symptom severity, in order to facilitate comparison between conventional “gold-
standard” metrics of symptom severity and the information that can be gleaned from our brief, semi-
structured encounter. Specifically, participants were interviewed to provide the information needed to score
the Positive and Negative Syndrome Scale (PANSS; Kay et al., 1987), a commonly used instrument for quan-
tifying severity across multiple symptom domains experienced by individuals with schizophrenia and other
psychotic disorders. Also administered (but not considered here) were the Montgomery-Åsberg Depression
Rating Scale (MADRS; Montgomery and Åsberg, 1979), the Young Mania Rating Scale (YMRS; Young
et al., 1978), and the Brief Psychiatric Rating Scale (BPRS; Overall and Gorham, 1962). While the pub-
lished instruments are often framed to gauge symptoms and experiences over fixed intervals (e.g., “over the
past two weeks”), we explicitly trained staff to inquire and score these instruments based on symptoms and
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Table 1: Questions from the semi-structured clinical interviews

# Scripted Question

Q01 What brought you into the hospital?

Q02 Has anything been on your mind recently?

Q03 What has the team been helping you with?

Q04 How’s the team doing in helping you?

Q05 What are your goals while you are here?

Q06 How have people been treating you?

Q07 How is the food?

Q08 How has your mood been?

Q09 How is your thinking?

Q10 How is your energy?

Q11 How is your sleep?

Q12 How is your self-confidence?

Q13 Are there any changes you have observed in yourself?

experience since the previous evaluation, which could vary depending on their hospital course and pattern
of study participation.

PANSS scores were assessed by trained clinical raters who reviewed each comprehensive assessment’s
responses to estimate the item-level severity scores. Inter-rater agreement was assessed biannually and re-
quired to exceed 0.7 on Krippendorff’s alpha. Item-level scores are summed to indicate indices of “positive”
and “negative” symptom severity, as well as a “general” severity index that was scored but not analyzed
here. The PANSS Positive Total (“PANSS Positive”) score provides an estimate of the severity of “positive”
symptoms, which refer to an excess or distortion of normal functions (i.e., delusions, conceptual disorgani-
zation, hallucinations, excitement, grandiosity, suspiciousness, and hostility). The PANSS Negative Total
(“PANSS Negative”) score provides an estimate of the severity of “negative” symptoms, which represent a
restriction or loss of normal functions (i.e., blunted affect, emotional withdrawal, poor rapport, passive social
withdrawal, difficulty in abstract thinking, lack of spontaneity and flow of conversation, and stereotyped
thinking). The PANSS General Total (“PANSS General”) score provides an estimate of the severity of other
symptoms (e.g., depression, anxiety, and impulsiveness), which was considered too broad and heterogeneous
to test our approach.

2.1.2. Audio-Visual Recordings

We recorded all brief encounters using multiple synchronized acquisition systems to derive high-quality
behavioral signals related to symptom severity. High-definition (1080p) webcams (Logitech c920 webcam)
were placed on the table between clinician and participant and focused on the face and upper torso to
optimize facial landmark detection. Both individuals (participant and clinician) wore a high-quality cardioid
headset microphone (Sennheiser HSP4, Germany) to optimize audio quality and separation of the two
audio streams from the two participants (“speaker diarization”), which improves transcription accuracy and
facilitates individualized voice feature analysis. For a subset of sessions, additional cameras (Microsoft Kinect
v1.0) were also positioned on a shelf above each participant to obtain gestural and postural signals. Signals
from the two microphones and 2-4 cameras were recorded using a custom software package (“MultiSense
Recorder,” CMU) that creates synchronized data streams. Here, we consider only linguistic features derived
from the diarized audio.

2.1.3. Transcription and Data Processing

Audio recordings were professionally transcribed using a medical transcription service (TranscribeMe,
Inc.), which produced timestamped and speaker-annotated transcripts with the redaction of personally
identifying information such as names and locations. Before language analysis, transcripts were further
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“John [ likes︸︷︷︸
reparandum

uh︸︷︷︸
interregnum

loves︸ ︷︷ ︸
repair

] Mary”

Figure 1: Example of the reparandum-interregnum-repair disfluency structure. Note that this example would be classified as
a restart disfluency because the repair term is different from the reparandum.

refined to correct typographical errors, mislabeled speakers, and missed redactions. Utterances spoken by
interviewers were not considered for the present analysis.

2.2. Language Measures

Fourteen language measures were selected based on prior literature as plausibly reflecting variance in
positive and negative symptoms, which can be grouped into (1) lexical measures, which characterize the
frequency of spoken words from specific semantic and functional categories; (2) sentence coherence measures,
which characterize the typicality and predictability of participants’ spoken word sequences; and (3) spoken
disfluency measures, which characterize the frequency of involuntary disruptions in participants’ speech.

Lexical measures were computed using the Linguistic Inquiry and Word Count (LIWC; Pennebaker et al.,
2015) dictionary, an established and well-validated lexicon, which organizes over 6,000 common English words
into semantically and functionally similar “word categories” such as pronouns, swear words, and emotion
words. For each transcript, we measured the percentage of the participant’s words that could be found in
the following ten LIWC word categories, which were identified a priori as potentially relevant to positive
or negative symptoms. Two word categories were related to affective processes: Positive Emotion words
such as “happy” and “love” and Negative Emotion words such as “annoyed” and “crying.” Three word
categories were related to cognitive and sensory processing: Cognitive Processes words such as “cause” and
“know,” Perceptual Processes words such as “look” or “heard,” and Relativity words such as “here” and
“until.” Finally, five word categories were related to drives: Affiliation words such as “friend” and “social,”
Achievement words such as “win” and “success,” Power words such as “superior” and “bully,” Reward
words such as “prize” and “benefit,” and Risk words such as “danger” and “doubt.”

Local (i.e., sentence-level) coherence of the spoken utterances was calculated using a perplexity measure,
which quantifies the participant’s word sequences’ average predictability within a set of utterances. Perplex-
ity is a measure of entropy or randomness, which implicitly reflects both vocabulary choices and syntactic
constructions, and was derived from a language model that tried to predict the participant’s next word
based on their previous words using a trigram backoff model (Seymore and Rosenfeld, 1996). The trigram
backoff model first tries to predict the next word using the previous two words. However, if the model has
never seen the previous two words together, it will try to predict the next word using the last word. Finally,
if the model has never seen that last word, it will default to predicting the most common word overall (ig-
noring context). Having been trained on a sizable corpus of conversational speech and text from telephone
conversations (Godfrey et al., 1992), the language model we used can be viewed as an approximation of
ordinary spoken language. Someone experiencing psychotic symptoms might show higher perplexity values
(i.e., it might be more difficult for the language model to predict their words) due to aberrations in their
vocabulary choices and sentence constructions associated with cognitive, affective, and interpersonal deficits
(e.g., conceptual disorganization or sparse content).

Speech disfluency was estimated as the frequency of three types of speech repairs: edits (i.e., nonverbal
fillers such as “uh” and verbal fillers such as “I mean” or “you know”), repeats (i.e., repetitions of words
or short phrases), and restarts (i.e., mid-sentence changes). Work by Shriberg (1994) defined disfluencies
within a tripartite reparandum-interregnum-repair structure. A reparandum is an error in speech that the
speaker subsequently corrects, and a repair term is that correction. An interregnum term is a filler token or
a cue phrase (e.g., “umm” or “I mean”) that occurs between the reparandum and repair terms as a way to
stall for time while the speaker generates the repair term. Note, however, that one or more of these terms
may be implicit (e.g., a long pause may take the place of an interregnum, and an interregnum may occur
without an explicit reparandum or repair). An example of this structure is depicted in Figure 1. Using this
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Figure 2: Depiction of the standardized between-person and within-person symptom components (each line is a participant)

structure to illustrate our three examined classes: an edit occurs when an interregnum occurs without an
explicit reparandum and repair term (e.g., “He. . . umm. . . wasn’t happy about it”), a repeat occurs when
the reparandum and repair term are the same (e.g., “I don’t. . . uhh. . . don’t think so”), and a restart occurs
when the reparandum and repair term are different (e.g., “I loved. . . I mean. . . I liked it”). Disfluencies were
annotated automatically using an incremental disfluency detection model (Hough and Schlangen, 2017).
This language model consists of neural network sequence models that consume incoming words and use
word embeddings, part-of-speech tags, and other features to predict disfluency classes for each word in a
strictly left-to-right, word-by-word fashion. As in the perplexity calculation, the model was used to tag
each utterance within each transcript separately for each disfluency class (edits, repeats, restarts) occurring
within each interview. The number of events for each class was then normalized by the total number of
words spoken.

2.3. Modeling

Our modeling approach utilized both predictive and inferential methods, which we view as comple-
mentary methods to explore different aspects of our research questions. Across both methods, we used a
multilevel approach to account for variance between individuals and within individuals over multiple obser-
vations, which is both an advantage and challenge for longitudinal, repeated-measures studies. Accounting
for a multilevel structure is critical given the potential for dependencies since observations of the same
participant are often more similar than observations of different participants, which could bias estimates
of model parameters (de Leeuw and Meijer, 2007). Several methods exist for decomposing longitudinal
data into separate between-person and within-person components (Hamaker and Muthén, 2019). We calcu-
lated each participant’s mean score across all observations to estimate each clinical and language measure’s
between-person components. To estimate each clinical and language measure’s within-person components,
we subtracted each participant’s mean score across all observations from their observed score at each ob-
servation (thus restructuring it as that participant’s deviation from their mean). Thus, the between-person
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components capture whether each participant tended to have lower or higher scores in general, while the
within-person components capture whether each observation was particularly low or high for each partici-
pant. These components are depicted in Figure 2.

2.3.1. Predictive Modeling

To determine how effectively the clinical measures could be estimated from the selected language mea-
sures, we developed separate predictive models for the PANSS Positive and PANSS Negative scores. We first
discuss the preprocessing steps we took to prepare the data for predictive modeling and then the techniques
we used to train and cross-validate the predictive models.

2.3.2. Predictive Model Preprocessing

Following the decomposition of variables into between- and within-person components, we developed
separate models to predict the between-person clinical components from the between-person language com-
ponents and predict the within-person clinical components from the within-person language components.
These models had different sample sizes: the between-person models had one data point per participant
(n = 38), and the within-person models had one data point per session, but only for those participants who
had more than one session (n = 60). We will refer here to the language measures as “features” and the
clinical measures as “labels.”

For all models, we preprocessed the data by dropping the features with near-zero variance, filtering
out highly correlated features (i.e., looking for two features with an absolute correlation greater than 0.9
and then removing the feature with the greater mean absolute correlation with the other features), and
z-transforming (i.e., centering and scaling) the features. Only a single feature (i.e., between-person restarts)
was removed due to its high correlation with another feature (i.e., between-person repeats). The labels were
not z-transformed to keep the predictions and performance measures on the same metric as the PANSS
scores.

2.3.3. Predictive Model Training and Cross-Validation

Three different predictive modeling algorithms were selected for estimation due to their ability to achieve
competitive performance in relatively small samples (Appendix A). First, we used the Elastic Net algorithm
(Zou and Hastie, 2005), a penalized form of linear regression that blends the L1 and L2 penalties of the
lasso and ridge regression methods. This approach contains automatic feature selection (via the penalties)
but does not automatically include interaction effects or nonlinear relationships. Second, we used the
Support Vector Regression (SVR) algorithm (Drucker et al., 1997), a form of large-margin learning that
can capture both interaction effects and nonlinear relationships through a radial basis function kernel but
does not include automatic feature selection. Finally, we used the Random Forest algorithm (Breiman,
2001), which combines multiple decision trees into an ensemble to combat overfitting while still performing
automatic feature selection and capturing interaction effects and nonlinear relationships. Note that our goal
in training multiple algorithms was to maximize our chances of finding one that would perform well in this
specific dataset (and not to find which is “best” in an overall sense).

To estimate a predictive model’s performance accurately, we must assess its ability to make predictions
on data that it has never seen. To accomplish this, we followed the recommendations of Cearns et al.
(2019) and used a nested cross-validation procedure to train our models, tune their hyperparameters, and
test their performance (Appendix B). Outer cross-validation was used to test the model on unseen data,
and inner cross-validation was used to tune the model hyperparameters. Both the inner and the outer
procedures took the form of stratified 10-fold cross-validation, and each was repeated three times with
different partitionings. Each predictive model was thus evaluated across 30 unseen test sets (i.e., 10 test
folds per outer cross-validation times three repetitions). All sessions from any given participant were always
assigned to the same fold for the within-person models to prevent data leakage (i.e., training on one session
from a participant and then testing on another session from the same).

Predictive performance was tuned and measured using the Root Mean Squared Error (RMSE) metric,
which captures the error of the model in absolute terms, i.e., the degree to which the model predictions
differed from the labels (using the same metric as the label). RMSE squares the errors before averaging
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Figure 3: Diagram showing the first set of models. The behavior measures (Bit) and symptom scores (S+it) are decomposed into
into between-person (i) components and within-person (t) components, and each symptom score component is regressed on the
corresponding behavior component (double-lines represent between-person components and regression pathways). Furthermore,
the within-person slopes are estimated as varying across participants (as indicated by the dot on the regression pathway).

and rooting them, meaning that larger errors are penalized more than smaller errors; thus, it is a more
conservative estimate of performance than alternatives like the mean absolute error. Given the relatively
small sample size, we did not expect our predictive models to achieve their maximum possible performance,
and we expected our performance estimates to contain quite a bit of uncertainty. However, we assessed
whether our models performed significantly better than a baseline to illustrate how, in future extensions of
this work, we hope to improve model performance and hold ourselves to stringent performance criteria to
map to demonstrable clinical utility. The specific approach we used to estimate these models was based on
Bayesian multilevel modeling (Gelman et al., 2014; McElreath, 2016) and is detailed in Appendix C.

2.3.4. Inferential Modeling

To gain insight into the nature, reliability, and specificity of the statistical relationships between specific
clinical and language measures, we also built two sets of linear regression models. We first describe the
motivation for and formulation of our models, then the procedures we used to estimate their parameters,
and finally the approach we used to interpret their results.

2.3.5. Inferential Model Formulation

The first set of inferential models regressed either the PANSS Positive or PANSS Negative scores on
each language measure separately (Figure 3). The slope parameters in these models capture the nature
(i.e., size and sign) of the relationship between the participants’ symptoms and each language measure, and
the uncertainty in the estimation of these parameters captures their level of reliability. The second set of
inferential models regressed each language measure simultaneously on both the PANSS Positive and PANSS
Negative scores (Figure 4). Including both clinical measures as predictors in the same models allowed us
to control for their shared variance statistically. The slope parameters in these models capture the degree
to which each is uniquely related to the language measures. In all inferential models, we also controlled for
participant sex as male participants tended to have higher PANSS Positive scores than female participants.

As described in subsection 2.3, we needed to account for the fact that we had multiple observations
of the same participants. Instead of building separate models for the between-person and within-person
components as we did for the predictive models, our approach to inferential modeling allowed us to include
both components in a single model. We used multilevel regression models (de Leeuw and Meijer, 2007) with
a two-level structure, nesting observations within participants. Each language measure was decomposed
into between-person and within-person components and these components were added to the models as
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Figure 4: Diagram showing the second set of models. The positive symptom scores (Pit), negative symptom scores (Nit), and
behavior measures (Bit) are decomposed into into between-person (i) components and within-person (t) components, and each
behavior measure component is regressed on the corresponding symptom components (double-lines represent between-person
components and regression pathways). Furthermore, the within-person slopes are estimated as varying across participants (as
indicated by the dots on the regression pathways).

separate predictor variables. Varying effects (i.e., random effects) were estimated to allow participants to
have different average levels of variables (i.e., intercepts) and different relationships between variables (i.e.,
slopes). In interpreting the results, we focused on the population-level effects (i.e., fixed effects), which
estimate the central tendencies of the distribution of varying effects (e.g., the typical intercept or slope in
the population of participants). To promote interpretability and comparability across models, we calculated
standardized slopes in each model using the approach described by Schuurman et al. (2016): standardizing
the within-person slopes using the within-person standard deviations and standardizing the between-person
slopes using the between-person standard deviations.

Finally, to account for the possibility that our outcome variables might be skewed in their distributions,
we characterized them using the skew-normal distribution (O’Hagan and Leonard, 1976), which can be
parameterized to add a skewness parameter α to the mean and standard deviation parameters of the Gaussian
distribution to allow non-zero skewness (and simplifies to the Gaussian distribution when α = 0). The exact
parameterization used is provided in Appendix D.

2.3.6. Inferential Model Estimation

We implemented our models within a Bayesian multilevel modeling framework (Gelman et al., 2014;
McElreath, 2016). In brief, Bayesian methods combine existing knowledge about the probability of different
parameter values (in the form of prior distributions) with observed data to generate updated knowledge about
the parameter values (in the form of posterior distributions). Statistical inferences can then be made using
this updated knowledge (e.g., estimating the central tendency and spread of the posterior distributions).
We estimated our models using the brms package (Bürkner, 2017, 2018) as a high-level interface to the
Stan platform for statistical computing (Gelman et al., 2015). Model estimation was performed through
Markov chain Monte Carlo (Neal, 1993) via the No-U-Turn Sampler algorithm (Hoffman and Gelman,
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2014), which converges quickly in high-dimensional models and eliminates the need for any hand-tuning of
hyperparameters.

In setting the prior distributions for our model parameters, we strove to exclude unreasonable values
without ruling out reasonable values (Gelman et al., 2014). Skew-normal multilevel regression models have
six main types of parameters: slopes, intercepts, standard deviations of the varying effects, correlations
between the varying effects, the standard deviation of the residuals, and the skewness parameter. For the
slope parameters, because these are the main parameters of interest, we used more conservative normal
priors centered on zero to apply light regularization and deter overfitting; the widths of these priors were
set to the sample standard deviation of the outcome variable. We used less conservative Student’s t priors
for the intercept parameters to reflect that we did not have substantive hypotheses for these parameters
and wanted them to be well-estimated; these priors were centered around the outcome variable’s sample
mean. We used nonnegative Student’s t priors centered on zero to rule out unreasonable negative values for
the varying effects’ standard deviations. For the correlations between varying effects, we used the approach
of Lewandowski et al. (2009) to assign an equal prior probability to all valid correlation matrices. For the
standard deviation of the residuals, we used Student’s t priors centered on zero. Finally, we used normal
priors centered on zero for the skewness parameter to assign a high prior probability to typical skewness
values. Implementation details, including exact priors are provided in Appendix E and Appendix F.

2.3.7. Inferential Model Interpretation

To interpret our inferential models’ results, we represented each slope’s magnitude as the central tendency
of its posterior distribution and the precision of each effect as the spread of its posterior distribution.
Specifically, we used the posterior median to measure central tendency and the 89% highest density interval
(HDI) to measure spread. The posterior median minimizes the expected absolute error, and the 89% HDI
is the narrowest continuous interval that contains 89% of the posterior density. The 89% HDI has become
common in Bayesian data analysis because it is more stable than the 95% HDI (Kruschke, 2014) and because
it highlights the arbitrariness of such threshold conventions in the first place (McElreath, 2016). Second, for
each effect, we calculated the probability of direction (pd), which is an “effect existence index” that varies
from 50% to 100% and can be interpreted as the probability that a parameter is strictly positive or negative
(Makowski et al., 2019). We interpreted effects with pd values above 95% as “significant.” However, we
appreciate the arbitrariness of this cutoff and encourage readers to consider the HDIs directly.

3. Results

A total of 49 eligible participants diagnosed with either schizophrenia, bipolar disorder, major depressive
disorder, or a related condition participated in the study between April 2015 and October 2018. Because
this paradigm was in development during the initial data collection phase, the first eight participants were
unusable for subsequent analysis, as we made refinements to the data acquisition procedures. We did not
collect or store any of these participants’ personally identifying or demographic data. Three participants had
no clinically scaled sessions using PANSS, leaving 38 participants with a clinically scaled session available
for analysis.

3.1. Background Characteristics

Demographics were collected from these 38 individuals and are reported in Table 2. Out of the 99 clinical
encounters recorded from these individuals, 82 were accompanied by a research interview for PANSS scoring.
Four of these recordings were excluded based on low quality or missing audio data caused by equipment
malfunction, poor microphone placement, or miscellaneous issues with transcription. This exclusion resulted
in a final sample of 78 sessions from 38 participants that were considered for analysis.

The semi-structured MD interviews lasted from 3.1 to 18.9 minutes (M = 9.4, SD = 3.8) in duration.
The total number of recorded sessions per participant ranged from 1 to 8 (M = 2.1, SD = 1.5), and
interviews occurred between 1 and 30 days after study enrollment(M = 4.1, SD = 4.7), all before hospital
discharge.
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Table 2: Distribution of demographic variables in the sample of participants

Count Percent Count Percent

Sex Education

Female 15 39% 12 or fewer years 3 8%

Male 23 61% 13 years 1 3%

Race 14 years 1 3%

White 30 79% 16 years 10 26%

Black 2 5% 17 or more years 16 42%

Asian 1 3% Age

Multiple 1 3% 18-24 years old 10 26%

(Not Reported) 4 11% 25-29 years old 12 32%

Ethnicity 30-39 years old 6 16%

Latino or Hispanic 3 8% 40-49 years old 7 18%

Not Latino or Hispanic 26 68% 50-59 years old 2 5%

(Not Reported) 9 24% (Not Reported) 1 3%

3.2. Clinical Results

Both PANSS scales range from a minimum possible score of 7 to a maximum possible score of 49. Across
the 78 included sessions, symptom severity spanned the continuum from low to high severity, as expected
based on the acute inpatient setting. PANSS Positive scores ranged from 7 to 36; as illustrated in Figure 5a,
sessions were distributed across all four of the quartiles reported by Kay et al. (1987): low (46 sessions;
59%), medium (12 sessions, 15%), high (7 sessions, 9%), and severe (13 sessions, 17%). PANSS Negative
scores ranged from 7 to 27; as illustrated in Figure 5b, sessions were distributed mostly among the low (59
sessions, 76%) and medium (16 sessions, 21%) quartiles, with few falling in the high (2 sessions, 3%) or
severe (1 session, 1%) quartiles.

3.3. Predictive Modeling Results

Our predictive models’ performance quantifies the extent to which the selected language measures could
be combined to predict the PANSS Positive and PANSS Negative scores using our data. For both scales,
we evaluated both the ability to predict the between-person component and the within-person component.

The results for predicting the PANSS Positive scores are provided in Table 3, and the model predictions
in each repetition of the cross-validation procedure are depicted in Figure 6. In predicting the between-
person labels from the between-person features, the Random Forest algorithm had the best performance
with an estimated RMSE score of 5.60, which is better than the estimated baseline of 6.40 (which would be
achieved by guessing the mean PANSS Positive score for all sessions). Our performance comparison model
found an 86.7% chance (i.e., posterior probability) that this algorithm was better than the baseline. In
predicting the within-person labels from the within-person features, the Elastic Net algorithm had the best
performance with an estimated RMSE of 3.81, which is better than the estimated baseline of 4.15. Our
performance comparison model found a 78.5% chance that this algorithm was better than the baseline.

The results for predicting PANSS Negative scores are provided in Table 4, and the model predictions
are depicted in Figure 7. In predicting the between-person labels from the between-person features, the
Random Forest algorithm had the best performance with an estimated RMSE of 4.05, which is better than
the estimated baseline of 4.32. Our performance comparison model found a 78.9% chance that this algorithm
was better than the baseline. In predicting the within-person labels from the within-person features, the
Elastic Net algorithm had the best performance with an estimated RMSE of 2.29, which is better than the
estimated baseline of 4.32. Our performance comparison model found a 56.8% chance that this algorithm
was better than the baseline.

11



Table 3: Results of the Bayesian model comparing the PANSS Positive predictive
models’ performance to the baseline

RMSE in Predicting PANSS Positive

Median 89% HDI Baseline Prob.

Between-Person

Elastic Net 5.97 [4.72, 7.17] 6.40 71.7%

Support Vector 6.49 [4.96, 7.84] 6.40 45.6%

Random Forest 5.60 [4.37, 6.81] 6.40 86.7%

Within-Person

Elastic Net 3.81 [3.06, 4.55] 4.15 78.5%

Support Vector 4.23 [3.31, 5.19] 4.15 44.6%

Random Forest 4.05 [3.23, 4.80] 4.15 58.8%

HDI = Highest density interval, Baseline = Score to beat,
Prob. = Posterior probability that median < baseline.

Table 4: Results of the Bayesian model comparing the PANSS Negative predic-
tive models’ performance to the baseline

RMSE in Predicting PANSS Negative

Median 89% HDI Baseline Prob.

Between-Person

Elastic Net 4.20 [3.43, 4.91] 4.32 61.1%

Support Vector 4.24 [3.53, 4.97] 4.32 57.3%

Random Forest 4.05 [3.44, 4.59] 4.32 78.9%

Within-Person

Elastic Net 2.29 [1.80, 2.75] 2.34 56.8%

Support Vector 2.30 [1.80, 2.77] 2.34 55.6%

Random Forest 2.38 [1.85, 2.87] 2.34 44.3%

HDI = Highest density interval, Baseline = Score to beat,
Prob. = Posterior probability that median < baseline.
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Figure 5: Histograms depicting the distributions of the (a) PANSS Positive scores and (b) PANSS Negative scores in the
current sample with dashed reference lines depicting the quartiles reported by Kay et al. (1987)

3.4. Inferential Modeling Results

3.4.1. Language Measures Associated with Positive and Negative Symptoms

For each of the two clinical outcomes measures (PANSS Positive and PANSS Negative), we first tested
for associations with the 14 language measures independently (i.e., without controlling for the other clinical
measure).

The results for PANSS Positive are provided in Table 5 and depicted in Figure 8. Between-person
slopes were significant for four lexical features: increased use of Perceptual Process words with higher
PANSS Positive (B = 0.45, pd = 100%), increased use of Affiliation words with higher PANSS Positive
(B = 0.27, pd = 97.0%), decreased use of Achievement words (B = −0.24, pd = 96.5%), and decreased use
of Reward words with higher PANSS Positive (B = −0.29, pd = 98.6%). Between-person slopes for the
remaining six lexical features did not show any reliable relationship with PANSS Positive. The between-
person slopes were also non-significant for the coherence and all three disfluency features. Within-person
slopes were significant for one lexical feature: increased use of Negative Emotion words were associated with
higher PANSS Positive (B = 0.41, pd = 98.9%). Within-person slopes were significant for the coherence
feature: increased perplexity was associated with higher PANSS Positive (B = 0.26, pd = 95.1%). Within-
person slopes were non-significant for the other nine lexical features (although the slope for Risk words was
suggestive) and non-significant for all disfluency features.

The results for PANSS Negative are provided in Table 6 and depicted in Figure 9. Between-person
slopes were significant for two lexical features and one disfluency feature: increased Negative Emotion
words were associated with higher PANSS Negative scores (B = 0.32, pd = 98.4%), decreased Relative
words were associated with higher PANSS Negative scores (B = −0.25, pd = 96.0%), and increased edits
were associated with higher PANSS Negative (B = 0.27, pd = 97.1%). Within-person slopes were significant
for two lexical features: decreased Cognitive Processes words were associated with higher PANSS Negative
scores (B = −0.37, pd = 97.9%), and decreased Power words were associated with higher PANSS Negative
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Figure 6: Predictions from each repetition of the outer cross-validation in predicting (a) the PANSS Positive Between-Person
component using Random Forest and (b) the PANSS Positive Within-Person component using Elastic Net.
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Figure 7: Predictions from each repetition of the outer cross-validation in predicting (a) the PANSS Negative Between-Person
component using Random Forest and (b) the PANSS Negative Within-Person component using Support Vector.
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Table 5: Population-level effects from the first set of inferential models predicting PANSS Positive scores from the decomposed
language measures. Note that each row represents a separate model and all models also control for participant sex.

Between-Person Slope Within-Person Slope

Median 89% HDI Sig. Median 89% HDI Sig.

Lexical Features

Positive Emotion Words 0.11 [−0.13, 0.33] −0.13 [−0.45, 0.15]

Negative Emotion Words 0.10 [−0.15, 0.32] 0.41 [ 0.15, 0.68] ?

Cognitive Processes Words −0.16 [−0.37, 0.06] −0.18 [−0.49, 0.12]

Perceptual Processes Words 0.45 [ 0.27, 0.60] ?? 0.00 [−0.23, 0.24]

Affiliation Words 0.27 [ 0.06, 0.48] ? 0.04 [−0.20, 0.29]

Achievement Words −0.24 [−0.46,−0.01] ? −0.09 [−0.41, 0.20]

Power Words 0.02 [−0.19, 0.22] −0.14 [−0.47, 0.14]

Reward Words −0.29 [−0.52,−0.08] ? 0.00 [−0.25, 0.24]

Risk Words −0.12 [−0.33, 0.07] 0.20 [−0.05, 0.44]

Relativity Words 0.08 [−0.11, 0.30] 0.05 [−0.19, 0.27]

Coherence Features

Perplexity 0.05 [−0.17, 0.28] 0.26 [ 0.00, 0.52] ?

Disfluency Features

Edits −0.09 [−0.31, 0.11] −0.16 [−0.43, 0.12]

Restarts 0.05 [−0.18, 0.26] 0.03 [−0.21, 0.28]

Repeats 0.05 [−0.18, 0.26] 0.01 [−0.25, 0.23]

HDI = Highest density interval, Sig. = Significance, ? pd > 95%, ?? pd > 99%.

Table 6: Population-level effects from the first set of inferential models predicting PANSS Negative scores from the decomposed
language measures. Note that each row represents a separate model and each model also controls for participant sex.

Between-Person Slope Within-Person Slope

Median 89% HDI Sig. Median 89% HDI Sig.

Lexical Features

Positive Emotion Words 0.12 [−0.07, 0.33] 0.04 [−0.26, 0.34]

Negative Emotion Words 0.32 [ 0.08, 0.54] ? 0.15 [−0.18, 0.48]

Cognitive Processes Words 0.09 [−0.13, 0.30] −0.37 [−0.70,−0.06] ?

Perceptual Processes Words 0.06 [−0.15, 0.27] 0.09 [−0.18, 0.36]

Affiliation Words 0.03 [−0.18, 0.23] −0.04 [−0.32, 0.23]

Achievement Words 0.07 [−0.17, 0.30] 0.07 [−0.16, 0.31]

Power Words −0.02 [−0.24, 0.19] −0.48 [−0.82,−0.16] ??

Reward Words −0.09 [−0.32, 0.14] 0.07 [−0.26, 0.43]

Risk Words 0.16 [−0.06, 0.41] 0.02 [−0.22, 0.27]

Relativity Words −0.25 [−0.47,−0.02] ? −0.20 [−0.49, 0.09]

Coherence Features

Perplexity −0.12 [−0.37, 0.13] 0.09 [−0.27, 0.43]

Disfluency Features

Edits 0.27 [ 0.04, 0.49] ? 0.24 [−0.14, 0.62]

Restarts 0.12 [−0.12, 0.36] 0.04 [−0.23, 0.30]

Repeats 0.15 [−0.07, 0.40] 0.00 [−0.25, 0.26]

HDI = Highest density interval, Sig. = Significance, ? pd > 95%, ?? pd > 99%.
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Figure 8: Forest plot depicting the standardized slope estimates in the PANSS Positive inferential models (points are posterior
medians and intervals are posterior 89% highest density intervals)
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Figure 9: Forest plot depicting the standardized slope estimates in the PANSS Negative inferential models (points are posterior
medians and intervals are posterior 89% highest density intervals)
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Table 7: Population-level effects from the second set of inferential models predicting each language
measure from the decomposed PANSS Positive and PANSS Negative scores. Note that each row is a
separate model and that all models control for participant sex.

Between-Person Slope Within-Person Slope

PANSS+ PANSS− PANSS+ PANSS−

Lexical Features

Positive Emotion Words −0.11 0.16 −0.16 0.21

Negative Emotion Words −0.08 0.42 ? 0.49 ? 0.04

Cognitive Processes Words −0.39 ? 0.27 0.02 −0.18

Perceptual Processes Words 0.57 ?? −0.15 0.11 0.02

Affiliation Words 0.09 −0.05 0.09 0.01

Achievement Words −0.49 ?? 0.22 −0.10 0.21

Power Words −0.07 0.03 0.17 −0.45 ?

Reward Words −0.46 ?? 0.03 −0.01 0.10

Risk Words −0.32 ? 0.24 0.29 −0.13

Relativity Words 0.38 ? −0.47 ?? 0.37 −0.52 ?

Coherence Features

Perplexity 0.19 −0.22 0.19 0.04

Disfluency Features

Edits −0.37 ? 0.49 ?? −0.24 0.19

Repeats −0.13 0.13 0.02 0.03

Restarts −0.14 0.19 −0.10 0.04

PANSS+ = PANSS Positive, PANSS− = PANSS Negative, ? pd > 95%, ?? pd > 99%.

scores (B = −0.48, pd = 99.4%). Within-person slopes related to PANSS negative were non-significant for
the other eight lexical features, the coherence feature, and the disfluency features.

3.4.2. Specificity of Associations to Positive and Negative Symptoms

Our second set of inferential models sought to identify associations with language measures specific to
positive and negative symptoms, i.e., statistical relationships that persisted after controlling for the other
clinical measure (and participant sex). Although the slopes in these models are standardized and can
be interpreted similarly to those in the first set of inferential models, these are unique or partial effects,
controlling for the clinical scales’ shared variance. That is, language measures identified by these models (as
significantly associated with one clinical score or the other) are linked only to unique variance in that score
and not with variance shared with the other clinical score. The estimates for the partial effects are presented
in Table 7. As in the first set of inferential models, we first present these selective results by clinical measure
(positive and negative symptoms) and then by component (between-person and within-person slopes).

Between-person PANSS Positive symptoms were significantly and uniquely associated with six lexical
features and one disfluency feature: increased use of Perceptual Processes words (B = 0.57, pd = 100%) and
Relativity words (B = 0.38, pd = 97.9%) were each associated with higher PANSS Positive across individuals;
decreased use of Cognitive Processes words (B = −0.39, pd = 97.6%), Achievement words (B = −0.49,
pd = 99.7%), Reward words (B = −0.46, pd = 99.8%), and Risk words (B = −0.32, pd = 95.4%) were
also associated with higher PANSS Positive across individuals; and decreased edits were associated with
higher PANSS Positive across individuals (B = −0.37, pd = 97.8%). The other four lexical features, the
other two disfluency features, and the coherence feature had non-significant unique between-person effects.
Within-person PANSS Positive symptom slopes were significantly and uniquely associated with a single
lexical feature: increased use of Negative Emotion words was linked to higher PANSS Positive (B = 0.49,
pd = 98.1%). Two lexical features were suggestive of a unique within-person association with PANSS
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Positive: increased use of Risk (B = 0.29, pd = 91.4%) and Relativity (B = 0.37, pd = 94.4%) words
were linked to higher PANSS Positive within an individual. The other seven lexical features, the coherence
feature, and the disfluency features had non-significant unique within-person effects.

Between-person PANSS Negative slopes were significantly and uniquely associated with two lexical fea-
tures and one disfluency feature: increased use of Negative Emotion words (B = 0.42, pd = 99.0%),
decreased use of Relativity words (B = −0.47, pd = 99.4%), and increased edits (B = 0.49, pd = 99.5%)
were each associated with higher PANSS Negative across participants. Between-person PANSS Negative
slopes were suggestive for two lexical features: increased use of Cognitive Processes (B = 0.27, pd = 91.9%)
and Risk (B = 0.24, pd = 90.2%) words were associated with higher PANSS Negative across individuals.
The other six lexical features, the coherence feature, and the other disfluency features had non-significant
unique between-person effects. Within-person PANSS Negative Symptoms were significantly and uniquely
associated with two lexical features: decreased use of Power words (B = −0.45, pd = 96.8%) and decreased
use of Relativity words (B = −0.52, pd = 97.6%) were associated with higher PANSS Negative within par-
ticipants. The other eight lexical features, the coherence feature, and disfluency features had non-significant
unique within-person effects.

4. Discussion

Changes in expressive and receptive language are common to many prominent mental state abnormal-
ities and vary as a function of clinical severity in both psychotic and affective disorders. Here, we used
a semi-structured clinical encounter to capture language measures in individuals hospitalized for mental
disturbances. We focused on linking specific language measures — which can be readily quantified using
available computational approaches developed by the natural language processing (NLP) community —
with core clinical outcome assessment measures of “positive” and “negative” symptoms of psychosis. We
first discuss our overall experiences with feasibility and tolerability of performing audio-visual recordings in
acutely ill individuals, including what we have found to be essential and non-essential components of a suc-
cessful research program leveraging inpatient psychiatric settings to study individuals whose mental states
vary both relative to one another and over time. We first summarize and discuss statistical inference testing
results, where each language measure was studied for relationships to positive and negative symptoms. We
then summarize the predictive models’ results, where we used machine learning to combine informative
features and studied models’ performances at estimating symptom severity levels. Finally, we acknowledge
some limitations of the present work and highlight critical outstanding questions that will be addressed in
future studies.

4.1. Applying a Computational Approach to Clinical Instruments

Although the behavioral health community is increasingly embracing evidence-based clinical practices,
neither psychiatry nor psychology has adopted a single objective marker of illness into standard clinical
practice. The judgment of expert clinicians and raters to detect the diagnostic and prognostic features of
psychiatric illness is not only expensive but almost impossible to monitor for efficacy since heterogeneous
training and credentialing practices can lead to substantial variance in clinical practice that limits gener-
alizability. Performance of behavioral task paradigms—as employed in experimental psychology, cognitive
neuroscience, or computational neuroscience—provides one strategy for probing latent model parameters
related to mental state disturbances (Browning et al., 2020; Huys et al., 2016; Maia et al., 2017). However,
there has been a recent push in cognitive neuroscience toward using task-free naturalistic paradigms that,
compared to modular task-based paradigms, provide a far richer, contextual, and more realistic probe of
mental functioning. While task-based paradigms may generate powerful evidence in controlled settings or
less acutely ill individuals, deriving reliable illness severity measures based on task performance alone is
challenging in real-world settings and at the higher end of the severity spectrum. For example, severely
ill individuals may be unable or unwilling to perform tasks designed to probe the very functions that are
potentially impaired in these individuals (e.g., aphasic individuals may be unable to perform some language
tasks), complicating the interpretation of these assessment strategies.
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Our research program is focused on developing novel methods for assessing clinical outcomes more ef-
fectively than previously possible with the aid of novel measurement sources, computational modeling, and
machine teaching, which leverages clinical expertise to improve model performance while addressing feasibil-
ity in real-world settings, including both traditional care settings and home environments. The application
of such novel approaches to the study of psychiatric populations could revolutionize the mental healthcare
system, providing an urgently needed backstop of objective behavioral data to aid clinical decision-making
and estimation of clinical outcomes. Importantly, this work aims not to replace clinicians or expert clinical
raters but rather to augment their abilities, expedite training, make more practitioners more effective in
more settings, and begin to provide much-needed evidence to scaffold and help shape clinical practices.

4.2. Use of Multilevel Models in Repeated Measures Studies of Individuals

Here, we developed separate models to predict the between-person clinical components (from the between-
person language components) and the within-person clinical components (from the within-person language
components) to examine a longitudinal sample comprised of different individuals providing a different num-
ber of repeated samples and showing different illness trajectories over their hospital course (and study
participation). Multilevel models are especially critical when developing objective markers with putative
clinical utility since the relationship between two variables may differ across levels (Hamaker and Muthén,
2019).

The challenge of using multilevel models to examine the association of features both between- and within-
individuals is how best to interpret features showing association in one but not both contexts. While less
intuitive, we feel it is critical to help clinicians build the understanding that the two sets of relationships are
often statistically uncoupled despite any default assumptions. Therefore, we were careful in this study to
report the results for both types of effects, providing some educated guesses around the pattern of results,
even though highly accurate and precise estimation of these effects will likely require larger samples than
we had here.

4.3. Language Features Associated with Positive Symptoms

We found that participants who experienced more positive symptoms on average tended to express more
words related to Perceptual Processes and Affiliation and fewer words related to Achievement and Reward.
When participants experienced more positive symptoms than usual (relative to their baseline), they tended
to express more Negative Emotion words than usual, and their language tended to be less difficult to predict
than usual (Figure 8, Table 5).

When controlling for between-person negative symptom means, experiencing more positive symptoms on
average predicted more frequent expression of Perceptual Processes and Relativity words, and less frequent
expression of Cognitive Processes, Achievement, Reward, and Risk words and fewer edit disfluencies. When
controlling for within-person negative symptom deviations, experiencing more positive symptoms than usual
(relative to one’s baseline) predicted more frequent expression of Negative Emotion words (and possibly more
Risk and Relativity words; Table 7).

More frequent use of words related to Perceptual Processes associated with more severe positive symp-
toms could reflect an excess or distortion of normal perception, possibly driven by delusions and halluci-
nations. In contrast, the less frequent use of Achievement and Reward words associated with more severe
positive symptoms could indicate a lower level of normal drives characteristic of healthy mental functioning.
This suggestion is consistent with prior work using LIWC to compare written language between a group
of individuals with a psychotic disorder and a group of non-psychotic individuals, showing relatively lower
written expression of words related to work, achievement, and leisure in the psychotic group (Mitchell et al.,
2015). See Figure 10 for examples of words that were frequently used in patients who experienced more
positive symptoms.

4.4. Language Features Associated with Negative Symptoms

We found that participants who experienced more negative symptoms on average tended to express
more Negative Emotion words and fewer Relativity words and tended to have more edit disfluencies. When
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(a) Negative Emotion words (b) Perceptual Processes words

(c) Affiliation words (d) Reward words

negatively correlated positively correlated

Figure 10: Words Associated with Positive Symptoms. Each panel illustrates a word cloud, in which words associated
with higher positive symptom scores are shown in red and words associated with lower positive symptom scores are shown in
blue, with word size indicative of the overall frequency of occurrence. Lighter shades represent Pearson correlations between
±0.15 and ±0.30 and darker shades represent correlations between ±0.30 and ±1.00. Each panel illustrates words drawn from
one of four lexical categories found to be associated with higher positive symptom scores: (a) Negative Emotion words, (b)
Perceptual Processes words, (c) Affiliation words, and (d) Reward Words. Asterisks (*) indicate stems; e.g., ‘attack*’ represents
the words ‘attack’, ‘attacks’, ‘attacking’, ‘attacker’, and so on.
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(a) Negative Emotion words (b) Cognitive Processes words

(c) Power words (d) Relativity words

negatively correlated positively correlated

Figure 11: Words Associated with Negative Symptoms. Each panel illustrates a word cloud, in which words associated
with higher negative symptom scores are shown in red and words associated with lower negative symptom scores are shown in
blue, with word size indicative of the overall frequency of occurrence. Lighter shades represent Pearson correlations between
±0.15 and ±0.30 and darker shades represent correlations between ±0.30 and ±1.00. Each panel illustrates words drawn from
one of four lexical categories found to be associated with higher negative symptom scores: (a) Negative Emotion words, (b)
Cognitive Processes words, (c) Power words, and (d) Relativity Words. Asterisks (*) indicate stems; e.g., ‘hurt*’ represents
the words ‘hurt’, ‘hurts’, ‘hurting’, ‘hurtful’, and so on.

participants experienced more negative symptoms than usual (relative to their baseline), they tended to
express fewer words related to Power and Relativity than usual (Figure 9, Table 6).

When controlling for positive symptoms, experiencing more negative symptoms on average continued to
show more frequent expression of Negative Emotion words, fewer Relativity words, and more edit disfluencies,
similar to the negative symptom models that did not control for positive symptoms. The selective models
also suggested possible relationships between higher negative symptoms with more Cognitive Processes and
Risk words and possibly higher language coherence. Experiencing more negative symptoms than usual
(controlling for positive symptoms) was associated with the expression of fewer Power and Relativity words
than usual (Table 7).

The less frequent use of words expressing relativity to time and space in association with more severe
negative symptoms (and less severe positive symptoms) is consistent with the possibility that this feature
primarily captures the “poverty of speech” aspect of the negative symptom domain. This result supports
prior work suggesting that computational measures of poverty of language content can predict psychotic
symptoms (Rezaii et al., 2019). This result also suggests that, in our sample, the frequency of occurrence of
Relativity words did not index the extent of reality monitoring because less frequent use of Relativity words
would be expected in association with an increase in severity of positive symptoms (and not a decrease as
observed here). See Figure 11 for examples of words that were frequently used in patients who experienced
more negative symptoms.

The increased occurrence of speech edits in association with more severe negative symptoms (and less
significantly, less severe positive symptoms) is consistent with the possibility that this language feature cap-
tures the speech disfluency often associated with the negative symptom domain. This finding complements
prior work suggesting that some quantitative measures of speech disfluency (specifically, pauses in speech)
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could distinguish individuals with schizophrenia from healthy controls (Cohen et al., 2014).

4.5. Language Features Associated with Both Negative and Positive Symptoms

The more frequent use of Negative Emotion words associated with more severe positive and negative
symptoms suggests that this language feature may not be associated with specific aspects of psychotic illness.
This finding is consistent with a body of work demonstrating negative biases in both the comprehension and
expression of language across primary psychotic and primary affective disorders, including schizophrenia,
major depressive disorder, and bipolar disorder (Dar et al., 2021; Fineberg et al., 2016; Hitczenko et al.,
2020; Holt et al., 2006; Jalenques et al., 2013). Similarly, the less frequent expression of words related
to Cognitive Processes associated with more severe positive and negative symptoms may reflect a general
cognitive deficit, consistent with the idea that cognitive deficits are characteristic of mental disorders across
multiple diagnoses (McTeague et al., 2017).

Thus, several of the language features predicted the PANSS Positive and Negative scores, consistent with
our working hypothesis that automatic measurements of these aspects of language contain signals associated
with illness severity in specific domains. Furthermore, several of the language features uniquely predicted
the symptoms in one of the domains (i.e., positive or negative). While, from the present results, we cannot
establish the relationship between language features and specific illness symptoms, our findings help generate
testable and specific hypotheses, as detailed below.

4.6. Predicting Psychiatric Assessments Using Natural Language Processing

When predicting participants’ positive symptoms, our best-performing model had an average error of
around 5.6 points (on the 7-to-49 PANSS scale) when predicting participants’ between-person means and an
average error of around 3.8 points when predicting participants’ within-person deviations. When compared
to the standard deviations (SDs) of these variables, this means that errors on the between-person level
tended to be around 0.88 SDs and errors on the within-person level tended to be around 0.92 SDs. When
predicting participants’ negative symptoms, our best-performing model had an average error of around 4.1
points (or 0.94 SDs) when predicting participants’ between-person means and an average error of around
2.3 points (or 0.98 SDs) when predicting participants’ within-person deviations. None of these models were
significantly better than the baseline.

We view these model performances as currently below what would be expected to provide clinical ac-
tionability under most common clinical conditions. However, this is not too surprising given that machine
learning models typically require much more data than we currently have to achieve their maximal per-
formance. In this study, we have provided a rigorous framework for developing and evaluating predictive
performance. As detailed below, future studies will collect more data and seek to improve predictive per-
formance as we determine optimal clinical use cases where such tools might help aid assessments, including
care triage and hospital discharge.

4.7. Feasibility and Tolerability of Audiovisual Assessment of Acutely Ill Individuals

In addition to AV methods refinements (as noted in subsubsection 2.1.2), our efforts allowed us to assess
the feasibility and tolerability of our data collection protocol. Although we could not systematically collect
information from non-consenting individuals about their reasons for declining to participate, our impression
was that most hospitalized participants were interested in the study so as to have an opportunity to speak
with a clinician. Enrolled participants did not seem to mind the presence of a camera or speaking into a
microphone and, using the described AV methods, the quality of the recordings was sufficient for quantitative
assessment of facial (e.g., facial expressions, eye gaze) and voice (e.g., speech rate, vowel space) features (Vail
et al., 2018; Vijay et al., 2016; Wörtwein et al., 2017).
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4.8. Urgent Need for Objective Markers of Psychotic and Affective Pathology

In psychiatric assessments, clinical instruments and extended, detailed interviews (e.g., First et al., 2015))
provide many numeric values to enter into computational analyses. Indeed, most of us in this field have
attempted to tie biological endpoints to the numerical assignments of our “masters-level clinicians” and
other research assistants, and even physicians, who spend hours with research participants asking questions
and filling out forms. This process can be cumbersome and unreliable at the item-level, even with months of
supervised training. In any case, a significant workforce cost and burden to patients is expended in generating
these error-prone data sets that serve as the behavioral scaffold for most clinical decision-making, insurance
claims, and translational research studies.

In clinical research, the principal reason we rely on this strategy for collecting behavioral phenotypic data
from research participants is the great challenge of quantifying their mental suffering, paranoia, and thoughts
of harming themselves. Patients’ presenting complaints are often philosophical/existential and exceedingly
personal, so we have a strong implicit bias that these idiosyncrasies would themselves be too challenging to
quantify into some clinically meaningful system. There is intense pressure to adhere to quantitative systems,
particularly from payer entities that are structured to optimize around numeric targets, thus having strong
financial incentives to develop them. However, as clinicians, we tend to push back against the quantitative
frameworks (e.g., DSM or ICD code, billable fields in a mental status exam, minutes or visits spent with
the patient) as demeaning of the true nature of our clinical work and capturing almost no nuance in their
presentation. These quantitative systems we rely on now are, for the most part, a cumbersome reality for
most clinicians, not a learning healthcare system, in which knowledge generation processes are embedded in
daily practice to produce continual improvement in care.

Eventually, we envision comprehensive behavioral monitoring solutions whereby suites of hardware (e.g.,
smartphone, computer, wearables, and other sensors), coupled with software (i.e., sophisticated compu-
tational analyses) will provide continuous assessment of a wide array of neuropsychiatric functions using
entirely or predominantly naturalistic assessment via usage patterns and sensor data from devices. In
the near term, strategies that incrementally advance on currently accepted practice are more pragmatic
as proof-of-concept studies, in which the primary goal is to demonstrate the feasibility and utility of the
approach. We, therefore, chose to focus on clinical instruments that are already used to assess patients.
Applying a computational approach to one of these existing systems afforded minimal systemic burden, at
least in principle, and could therefore be scalable if deemed to provide any useful or “clinically actionable”
information.

4.9. Limitations and Future Directions

As already stated, a larger sample would be needed to achieve more competitive predictive performance,
and yield more conclusive insights into the relationships between symptoms of a psychotic disorder and
patterns of expressive language usage. Additionally, our sample represented the demographics of inpatients
at McLean Hospital but it is currently unknown how well these results would generalize to samples drawn
from different populations. For example, our sample was relatively high in education level, which may
have influenced various aspects of their expressive language. In order to ensure that medical technologies
such as the ones proposed here are developed and applied equitably across groups, it is critical that future
work in this space (1) transparently reports samples’ demographic characteristics, (2) acknowledges that the
generalizability of results across contexts and groups cannot be assumed without evidence, (3) collects and
analyzes data from increasingly diverse samples, and (4) systematically checks for and rigorously quantifies
predictive biases and performance gaps across different populations.

We represented participants’ psychiatric state using the total scores in two of three PANSS categories,
the PANSS Positive and PANSS Negative. These measures are appropriate in that they are among the
primary scales used to represent the severity of positive and negative symptoms of psychotic disorders, both
in the clinic and in clinical research. However, several factor analyses of the PANSS suggest that the com-
plex symptomatology of psychotic disorders is more accurately represented by a five-category classification
(positive, negative, cognitive, excitement/hostility, anxiety/depression) than a three-category classification
(positive, negative, cognitive) (Lindenmayer et al., 1994; van der Gaag et al., 2006; Citrome et al., 2011).
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Thus, future work examining the relationships of language features with more precise and detailed symp-
toms categories (as defined in factor analyses using large samples (e.g., Citrome et al., 2011), or with specific
symptoms (e.g., delusions and hallucinations), may improve our understanding of these relationships and
yield more reliable language biomarkers.

We characterized participants’ expressive language using ten lexical measures, a coherence measure, and
several disfluency measures. However, the NLP community has developed other relevant measures that
could be brought to bear in this type of work, such as use of metaphorical language (e.g., Gutiérrez et al.,
2017) and complexity of syntax (Bedi et al., 2015; Corcoran et al., 2018; Elvev̊ag et al., 2007). In addition,
receptive conversational skills (i.e., language comprehension) could be assessed by examining the coherence
of participants’ responses in the context of the MD’s prompts and questions. We also note that the utility of
our findings and approach using human transcription will only increase as technologies for automatic speech
transcription become more sophisticated, accurate, and widely available.

Finally, future work should integrate spoken language measures with non-verbal measures of face, voice,
and body expressions. Nonverbal behavior plays a crucial role in human communication: spoken language
conveys in tandem linguistic information (i.e., the meaning of words and sentences) and paralinguistic,
nonverbal information (i.e., the form of speech delivery). The nonverbal information, consisting of voice
acoustic characteristics (e.g., tone, amplitude, prosody), nonverbal sounds (e.g., laugh, grunt, cry), facial
expressions (e.g., eye gaze, frown, smile), and body posture (e.g., leaning, hand gestures), provides the
context for understanding the linguistic information in spoken language and both are key for decoding
the speaker’s emotional and mental state. Both the verbal and nonverbal aspects of spoken language
communication are an essential part of clinical assessments in mental health settings, and have been found
to relate to symptom severity in preliminary studies in a subset of the present cohort where each type of
feature was examined separately (Vail et al., 2017; Vijay et al., 2016; Wörtwein et al., 2017). Integrating
the verbal and nonverbal measures of spoken language in larger samples will lead to more accurate modeling
and better understanding of their relationships with mental disease symptoms.

5. Conclusions

We examined the feasibility and value of measuring lexical, coherence, and disfluency features of ex-
pressive language in individuals hospitalized with a psychotic disorder during brief semi-structured clinical
interviews conducted over the course of their hospitalization. We found that our recording procedures were
well tolerated by both clinical staff and hospitalized inpatients and produced data that were of sufficient
quality for human transcription and computational analysis using natural language processing methods.
Inferential modeling revealed language features that tracked with positive symptoms alone (e.g., Perceptual
words), negative symptoms alone (e.g. disfluencies), as well as some features that tracked with both (e.g.,
Negative Emotion words). We conclude that automatic detection of language abnormalities associated with
illness severity in specific symptoms domains of psychosis is possible and informative, even in acute clinical
settings. Future studies with larger, more diverse samples, over extended periods of time, and in relation
to other non-verbal signals such as vocal acoustics, face expression, and body movements, are necessary
to establish the full potential of naturalistic recordings to generate rich, detailed information about mental
health status. Nonetheless, these studies demonstrate how computationally-defined behavioral phenotypes,
as can be derived from natural language, can serve to scaffold neurobiological observations seeking to estab-
lish causal links between specific circuit abnormalities and subjective experiences, by providing discrete and
reproducible behavioral signals that can be measured with fidelity and temporal granularity. Given that
the ultimate goal of neurobiological understanding is to alleviate subjective suffering of those experiencing
neuropsychiatric conditions, our work demonstrates how computationally rigorous measurement and analy-
sis of human behavior in individuals experiencing the conditions could provide a bridge between subjective
and neurobiological observations, leading to a more progressive, rather than idiosyncratic, accumulation of
scientific knowledge regarding the neurobiological mechanisms of disease risk, emergence, progression, and
recovery.
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Appendix A. Predictive Modeling Details

Elastic Net Implementation

caret Method “glmnet” using glmnet::glmnet()

Mixing Percentage α ∈ {0.100, 0.325, 0.550, 0.775, 1.000}, grid search
Regularization λ ∈ {0.003, 0.016, 0.074, 0.343, 1.590}, grid search

Support Vector Implementation

caret method “svmRadial” using kernlab::ksvm()

Regularization Parameter C ∈ {0.25, 0.50, 1.00, 2.00, 4.00}, grid search
Inverse Kernel Width σ analytically derived using kernlab::sigest()

Random Forest Implementation

caret method “ranger” using ranger::ranger()

Number of Randomly Selected Predictors mtry ∈ {2, 5, 8, 11, 14}, grid search
Splitting Rule ∈ {“variance”, “extratrees”}, grid search
Minimal Node Size = 5

Appendix B. Cross-Validation Algorithm

1. Partition ALL data into 10 outer folds∗ using median split stratification†

2. Loop through each outer fold one at a time, doing the following for each:

(a) Assign the currently selected outer fold to be TESTING data
(b) Combine the remaining 9 outer folds to be DEVELOPMENT data
(c) Partition DEVELOPMENT data into 10 inner folds∗ using median split stratification†

(d) Loop through each inner fold one at a time, doing the following for each:

i. Assign the currently selected inner fold to be VALIDATION data
ii. Combine the remaining 9 inner folds to be TRAINING data
iii. Train predictive models with various hyperparameter values on TRAINING data
iv. For each model trained in Step 2(d)iii, make predictions on the VALIDATION data and save

its performance in terms of RMSE

(e) Repeat Steps 2(c) and 2(d) three times to collect 30 total VALIDATION performance scores
(f) Select the hyperparameters with the best VALIDATION performance using 1.5% tolerance‡

(g) Re-train the model on all DEVELOPMENT data using the hyperparameters selected in Step 2(f)
(h) Use the model from Step 2(g) to make predictions on the TESTING data, saving its performance

3. Repeat Steps 1 and 2 three times to collect 30 total TESTING performance scores

4. Store all TESTING performance scores for analysis

∗ All sessions from a participant were assigned to the same fold in both outer and inner cross-validations.
In these cases, stratification was performed using the mean of the label variable across sessions.
† Median split stratification involves splitting the data points into two relatively balanced groups based

on whether they are above or below the median value for the label variable.
‡ Tolerance selection involves selecting the least complex model that scored within X% of the best

performance. By lightly penalizing complexity, this procedure reduces overfitting compared to selecting the
best performance.
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Appendix C. Predictive Model Comparison

Save the label and prediction for each data point in each repetition’s testing fold. Calculate each data
point’s squared error. Estimate a model predicting these squared errors with nested varying intercepts to
account for the dependency related to repetitions, folds, participants, and sessions. Square root the model’s
intercept to estimate RMSE.

Comparison Model for Between-Person Predictions

Formula sqerr ∼ 1 + (1 | repetition/fold) + (1 | participant)

Priors Intercept: rayleigh(sigma = label between sd^2)

Participant SDs: student t(nu = 3, mu = 0, sigma = sqerr sd)

All others: default

Hyperparameters Delta (target acceptance rate) = 0.999999

Maximum tree depth = 14

Number of Markov chains = 8

Warmup iterations per chain = 2500

Inference interations per chain = 2500

Post-Processing RMSE = sqrt(Intercept)

Compare RMSE posterior to Baseline (label between sd)

Comparison Model for Within-Person Predictions

Formula sqerr ∼ 1 + (1 | repetition/fold) + (1 | participant/session)

Priors Intercept: rayleigh(sigma = label within sd^2)

All others: default

Hyperparameters Delta (target acceptance rate) = 0.9999

Maximum tree depth = 14

Number of Markov chains = 8

Warmup iterations per chain = 2500

Inference interations per chain = 2500

Post-Processing RMSE = sqrt(Intercept)

Compare RMSE posterior to Baseline (label within sd)
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Appendix D. Parameterization of the Skew-Normal Distribution

The standard parameterization of the Gaussian distribution uses a mean parameter µ and a standard
deviation parameter σ as follows.

f(y) =
1√
2πσ

exp

(
−1

2

(
y − µ
σ

)2
)

The typical parameterization of the skew-normal distribution uses a location parameter ξ, a positive
scale parameter ω, and a skewness parameter α as follows (where erf is the error function of the Gaussian
distribution).

f(y) =
1√
2πσ

exp

(
−1

2

(
y − ξ
ω

)2
)(

1 + erf

(
α

(
y − ξ
ω
√

2

)))
To reparameterize this distibution in terms of the mean parameter µ, standard deviation parameter σ,

and skewness parameter α, the ω and ξ parameters can be calculated from these values as follows.

ω =
σ√

1− 2
π

α2

1+α2

ξ = µ− ω α√
1 + α2

√
2

π

Appendix E. Inferential Model Set 1

Formula symptom ∼ 1 + sex + behavior between z + behavior within z +

(1 + behavior within z | participant)

Family skew normal(link = "identity", link sigma = "log", link alpha = "identity")

Priors Alpha (skewness): normal(mu = 0, sigma = 4)

Betas (slopes): normal(mu = 0, sigma = symptom sd)

Intercept: student t(nu = 3, mu = symptom mean, sigma = symptom sd)

Sigma (Residual SD): student t(nu = 3, mu = 0, sigma = symptom sd)

Varying Effect SDs: student t(nu = 3, mu = 0, sigma = symptom sd)

Varying Effect Correlations: lkj(eta = 1)

Hyperparameters Delta (target acceptance rate) = 0.999

Number of Markov chains = 8

Warmup iterations per chain = 2500

Inference interations per chain = 2500

Post-Processing Between-person slopes = Beta / symptom between sd

Within-person slopes = Beta / symptom within sd
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Appendix F. Inferential Model Set 2

Formula behavior ∼ 1 + sex + positive between z + positive within z +

negative between z + negative within z +

(1 + positive within z + negative within z | participant)

Family skew normal(link = "identity", link sigma = "log", link alpha = "identity")

Priors Alpha (skewness): normal(mu = 0, sigma = 4)

Betas (slopes): normal(mu = 0, sigma = behavior sd)

Intercept: student t(nu = 3, mu = behavior mean, sigma = behavior sd)

Sigma (Residual SD): student t(nu = 3, mu = 0, sigma = behavior sd)

Varying Effect SDs: student t(nu = 3, mu = 0, sigma = behavior sd)

Varying Effect Correlations: lkj(eta = 1)

Hyperparameters Delta (target acceptance rate) = 0.9999

Number of Markov chains = 8

Warmup iterations per chain = 2500

Inference interations per chain = 2500

Post-Processing Between-person slopes = Beta / behavior between sd

Within-person slopes = Beta / behavior within sd
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